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An Enhanced Fourier Transform 
Spectrometer with a Seairch Algorithm 

Shiunn-Jang Chern and Kuo-Jiann Chao 

Abstract-Interferometric instruments have the following seri- 
ous weak points: 1) the necessity of doing a Fourier transform 
that involves a vast amount of calculation; 2) the lack of knowl- 
edge of suitable measuring conditions until the Fourier transform 
is finished; and 3) the spectral resolution of the conventional 
Fourier-based techniques is significantly affected by the sampling 
rate, data length, and noise in signal processing. In this paper, an 
enhanced spectrometer is proposed using the modified forward- 
backward linear prediction method (MFBLP) with a search 
algorithm. To document the advantage of the method presented, 
a computer simulation for multiple-wavenumber estimation is 
investigated. The MFBLP method is truly superior to the fast 
Fourier transform (FFT) method. In general, the spectral reso- 
lution using the FFT method is proportional to the data length. 
In this paper, however, we will show that excellent results can 
also be obtained from only 60 sample points using the FFT 
method. Moreover, from experimental results, we also conclude 
that the sampling rate must be consistent with the condition 
632 < f, . t . D < 3164, where f, represents the value of the 
pulse generator frequency in Hz, t the observation time, and D 
the decimation factor. 

I. INTRODUCTION 
T is well known that an important feature of interferometric I (e.g., the Michelson-type) spectrometers is that they allow 

a fast optical system to have the Fellgett advantage; i.e., the 
ability to measure radiation from the entire spectral region 
passing through the system at all times. This feature is espe- 
cially effective for obtaining far IR spectra. The applications 
of Fourier transform spectroscopy or interferometry in science 
and industry are extensive. The usefulness and simplicity 
of this technique lend it to use in almost every field into 
which the spectroscopist has ventured and into some where 
he has not yet gone. Fourier transform spectroscopy has an 
advantage in most instances over conventional techniques, but 
interferometric instruments have the following serious weak 
points: 1) the necessity of doing Fourier transformations that 
involve a vast amount of calculation; 2) the lack of knowledge 
of suitable measuring conditions until the Fourier transform is 
finished; and 3) the spectral resolution of the conventional 
Fourier-based techniques is significantly affected by the data 
length, decimation factor, and noise in signal processing. In 
this paper, we propose a spectrum estimation method referred 
to as the modified forward and backward linear prediction 
method with a search algorithm, or in short, the search 
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Fig. 1. Basic Michelson interferometer optical diagram. 

algorithm, for optical spectroscopy analysis. Experimental 
results wi 11 demonstrate that the method presented retains the 
advantages of interferometric instruments and overcomes their 
weak points. 

11. METHODS OF ANALYSIS 

A. The Principle of the Spectrometer 

A Fourier transform spectrometer (FTS) is essentially a 
modified IMichelson interferometer [I], [ 2 ] .  Fig. 1 is an optical 
diagram of the basic Michelson interferometer; it consists of 
two mirrors, M I  and M2, and a beamsplitter at 45' with 
respect to their normals. After the radiation beam is collimated 
by a lens, its amplitude is divided by the beamsplitter. One 
part of the radiation beam, A, reflected from the beamsplitter, 
goes to anid returns from a fixed mirror, and then is transmitted 
through the beamsplitter. The other part of the radiation beam, 
B, goes through the beamsplitter to a movable mirror, which 
reflects the beam back. The beam, B, is reflected from the 
beamsplitter and mixed with beam A. The resultant beam 
passing through a sample area is then collected by a focusing 
lens and directed to a detector. When the distance m as 
shown in Fig. 1 is not equal to the I ,  the difference of these 
two paths is defined as the optical path difference (OPD), 
S = 2(m - 1). In this case, the combined beams will produce 
interference arising from a phase difference. Consequently, the 
interferogram is an intensity variation pattern corresponding 
to phase difference. 
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Now, assuming perfect optics and considering an incident 
monochromatic wave with amplitude 4Eo(a), where a is the 
wavenumber, a = i, and is measured in pm-', the amplitude 
reflected from the fixed mirror and passed to the detector can 
thus be presented as 

(1) 

and the amplitude reflected by the movable mirror and re- 
flected to the detector is 

3 2 T Z / X  Yl(2) = Eo(f f )e  

yZ(z) = Eo(a)e32*(z+s)/x. (2) 

Using the law of superposition, one finds the recombining 
amplitude as A = yl(z) + y2(z). Therefore, the signal 
received by the detector is a variation of intensity, i.e., 

I (&)  K /AI2 = A*A 
= 2B,2 ( a )  (1 + cos( 27rSIA)). ( 3 )  

When the movable mirror displacement occurs with constant 
speed, U, for t s, S = 2vt; hence, from (3) we have 

27r6/X = 27r(2v/A)t. (4) 

Consequently, the frequency of the interferogram is, for a 
given wavelength A, 

(5)  

This frequency, f ,  can be calculated by taking a Fourier trans- 
form of the sampled interference pattern. If the velocity, U,  of 
the movable mirror is known, the wavelength or wavenumber 
can be determined from (5)  [3]. 

The variational part of the intensity of a nonmonochromatic 
wave, which consists of a group of cosine waves with different 
frequencies, can be written as 

f = 2v/A = 2va. 

gr, 

CO 

I(S) = B(a,) cos(27rSaz) (6) 
a=1 

where B(a,) is a discrete spectrum corresponding to az. JX the 
light source has a continuous spectrum, then we can replace the 
summation by an integral in (6). For convenience, the cosine 
function will be presented in exponential form as 

CO 

Interferogram I ( S )  = B(a)e32"s"da. (7) 

Equation (7) describes the interference pattern. By taking 
the Fourier transform of (7), we can get the corresponding 
spectrum 

Spectrum ~ ( a )  = S_, I(S)e-l2"6"dS. (8) 

We have referred to (7) and (8) as the Fourier transfonn 
pair. If high resolution is desired in (8), the displacement 
of the mirror must be increased appropriately. However, 
the mirror displacement is finite. In fact, the resolution is 
also influenced somewhat by processing (windowing). The 
maximum displacement of OPD is denoted by A = S,,, 
which determines the resolution of the interferometer, A, = 
& pm-l. Fortunately, the previous hardware limitation can be 
easily improved by using a signal-processing technique. 

1, 

03 

where (-)* represents the complex conjugate. Equation (10) 
is the so-called Yule-Walker equation and can be written in a 
matrix form as 

A& = -h. (1 1) 

Since Matrix A is not a square matrix, we multiply by AH, 
where the superscript H is denoted as the Hermitian transpose, 

Authorized licensed use limited to: Tamkang Univ.. Downloaded on April 12,2023 at 03:44:36 UTC from IEEE Xplore.  Restrictions apply. 



CHERN AND CHAO: ENHANCED FOURIER TRANSFORM SPECTROMETER WITH SEARCH ALGORITHM 

on both sides of ( l l ) ,  to obtain 

Rg = t. (12) 

It can be seen that (12) is the normal equation resulting from 
minimizing the linear predictor (LP) error [6] power, and 
that R is the deterministic correlation matrix. The correlation 
matrix, R, can be expressed in terms of its eigenvalues and 
eigenvectors, i.e., 

R = URUH (13) 

with matrices U and A defined as 

U = [Ul, U 2 , .  . . , UL], (14) 
A = diag[A1,Az;..,A~], (15) 

respectively. Here, the eigenvalues, A,, of R are arranged in 
the decreasing order, and Ut is the corresponding eigenvector 
of A,. Whether noise is present or not, substituting (13) into 
(12), we can get the weight vector, g, which is given by 

L 

g = E ( 1 / A i ) U Z  U? 1. 
a=1 

If no noise is present, we have M large principal eigenvalues, 
and the remainders are all zero. On the other hand, the 
eigenvalues A,, i = M+ 1, . . . , L will not be zero in the noisy 
case; that is, these eigenvalues are introduced by the noise 
component in the received signal. This procedure is the so- 
called FBLP method. The main difference between the FBLP 
and the MFBLP methods is that the MFBLP method can be 
used to alleviate the undesired effects due to the eigenvectors 
of the noise subspace. Consequently, when the eigenvalues 
and corresponding eigenvectors that are produced by the noise 
subspace are ignored, the weight vector used in spectrum 
estimation is given by [4] 

M 

2=1 

The solution of g in (17) is also referred to as the principal 
component approach. When tap weight coefficients are calcu- 
lated, the spectrum can be obtained by substituting weights 
into the formula derived by Griffiths in 1975 [7] as 

1 
IH(ejw) l 2  S(w) = 

C. Search Algorithm 
The constraint of the MFBLP method is that the number of 

signal sources has to be known in advance and may not be 
available in practical applications. Therefore, based on the in- 
formation about noise power, we propose a search algorithm to 
automatically extract the principal eigenvalues corresponding 
to the different optical wavenumbers. The method of MFBLP 
with the search algorithm is, therefore, referred to as the search 
algorithm. To propose a search procedure, let us discuss the 

- 
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Fig. 3. Backward prediction error filter. 

noise power when noise is present in the received signal. 
Theoretically, from (16) and (17), we see that the ( L  - M )  
small eigenvalues are estimates of the noise power. Thus, if 
the average noise power, 02, is available, then the following 
relationship will hold: 

L 

( L - M ) O i  = A, 
i=M+l 

A1 > A2 > A3 > ... > AL. (20) 

Based on (20), a search algorithm used to extract the principal 
eigenvalues is proposed and is depicted in Fig. 4. Basically, the 
search method, illustrated in Fig. 4, is based on the knowledge 
of the noise power. 

To describe the procedure, some dummy variables in Fig. 4 
are defined. 

1) Tpower is the total power, can be estimated from the 
input signals, and is, theoretically, equivalent to the sum 
of all the eigenvalues. 

2) Signal stands for the sum of the principal eigenvalues. 
3) Noise is the noise power (the sum of eigenvalues cor- 

responding to the noise components) and is computed 
by subtracting Signal from Tpower; e.g., Tpower - 
Signal. 

4) ~2 is the average noise power estimated by the adaptive 
line-enhancer (ALE), depicted in Fig. 5. 

As deslcribed before, 02 can be estimated with the help of 
the ALE, which is depicted in Fig. 5. The ALE consists of 
a delay element and a linear predictor. The predictor output, 
i(n), is subtracted from the input signal, ~ ( n ) ,  to produce 
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Fig. 4. Flow chart of the search procedure, 

the estimation error e (n ) .  The estimation error is used to 
adaptively control the coefficients of the predictor, where 
the adaptive algorithm used here is the least mean-square 
(LMS) algorithm. The predictor input equals the original 
input signal delayed by a 7-step. The main function of the 
delay parameter 7 is to remove the correlation that may exist 
between the noise component in the original input signal 
z(n)  and the noise component in the delayed predictor input 
z(n - T). An ALE may, thus, be viewed as an adaptive 
filter that is designed to suppress broadband components (e.g., 
white noise) contained in the input, while at the same time 
passing narrowband components (e.g., sinusoid waves) with 
little attenuation. When the LMS algorithm has converged, 
the estimated error square will approach the noise variance, 
which is what we want. Due to the convergence property of the 
LMS adaptive algorithm, in general, we need more samples to 
achieve desired performance. Therefore, for a short data record 
the time-domain LMS adaptive algorithm may not be suitable 
for noise estimation. However, by recirculating the input data 
to the time-domain LMS adaptive algorithm many times, we 
may achieve the goal described above. The configuration of 
the time-domain ALE having the ability to recirculate the input 
data is depicted in Fig. 6 [8]. 

111. RESULTS AND DISCUSSION 
For convenience in describing the problem concerned with 

an optical signal sampled in the different cases, each set 

I 
I I 

Fig. 5. Block diagram of adaptive line-enhancer (ALE). 

Fig. 6 .  
line-enhancer. 

Block diagram of the recirculation of the input data adaptive 

of sampled signals will be denoted by a remark number. 
In H20-4, for example, the “H’ represents the He-Ne laser 
beam, 20 denotes the pulse frequency, and 4 (seconds) is the 
observation time. In this study, the length of sampled data for 
all signal sets is 1000 points. For the signal set H20-4, the 
data length is 100 points when the signal set is decimated by 
D = 10. The decimator functions by low-pass filtering the 
input signal and then compressing the samples [9], [lo]. The 
procedure of optical signal processing described in this paper 
is depicted in Fig. 7. Also, the operation of the decimator just 
described is shown in Fig. 8. 

The selection of the number of tap weights for the MFBLP 
method depends on the amount of data available. However, for 
wavelength estimation the greater the number of tap weights 
the more computation time is required. From [4] and [6] ,  we 
know that the number of tap weights is proportional to the 
length of data points, and the empirically derived result is 
given by L = i N .  But, as shown in Table IV, this is not a 
unique value. For convenience, we consider the tap weights to 
be 30, and the length of data points is chosen to be 60. This 
means that only 60 points from the previously decimated data 
(100 decimated data) are acquired. There are many ways that 
we can have our 60 data points from the 100 decimated data. 
For example, we can pick a data set in sequence from 1 to 60, 
or pick 2 6 1 ,  3-62, . . . , 41-100, etc. 

Now, for wavelength estimation, we simply apply the 60 
data points to both the FFT method and the method of MFBLP 
with search algorithm. To give better resolution, the FFT for 
a data sequence with the length of 2048 is considered. For the 
data points being 60, we will pad zeros to fill out the sequence 
length to be 2048 points, so a power-of-two FFT algorithm can 
be employed to obtain the spectrogram of the optical signal. 

To see the effect due to environmental disturbance, we 
consider the signal set of H20-4; here, 7 sets of optical signals 
of the H20-4 were obtained arbitrarily. Fig. 9 shows the best 
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Fig. 7. Flow chart of the signal-processing procedure. 

Average 
time 

(seconds) 
0.2574 
0.2178 
0.198 
0.1067 
0.12375 
0.10395 
0.099 
0.0891 
0.05445 
0.0441 
0.03395 
0.02425 
0.02425 

Fig. 8. General system for sampling rate reduction by D.  

Estimated 
results 

0.6326 pm 
0.6326 pm 
0.6350 pm 

infinity 
0.6326 pm 
0.6326 pm 
0.6326 pm 
0.6302 pm 
0.6326 pm 
0.6326 pm 
0.6302 pm 
0.6253 pm 

infinity 

result among the 7 sets, because the estimated wavelength is 
closer to the true value 0.6328 pm. The worst result is shown 
in Fig. 10. It is evident from both Figs. 9 and 10 that the 
estimation precision was influenced by the environment during 
the processing of the optical signal. 

Moreover, we would like to understand how the estimation 
results were influenced by the frequency of the pulse generator 
and data length in the sampling process. To do so, the optical 
signals H20-4 and H100-8 were examined. In the case of 
H100-8, since the signal variation frequency is 10 times that of 
the H20-4 due to the movabIe mirror displacement occurring at 
a faster speed, the decimation with D = 10 as in H20-4 is not 
required, as can be seen from Figs. 9(a) and 1 l(a). Therefore, 
for wavelength estimation, 60 data points are adopted directly 
from the 1000 original data points for further processing. 
The corresponding results using both the FFT method and 
the method of MFBLP with search algorithm are given in 
Figs. 9(b) and (c), and 1 l(b) and (c), respectively. We observe 
that all the figures estimate the wavelength as 0.6326 pm very 
close to the true value of 0.6328 pm, except for Figs. 9(b) 
and ll(b), which is the result of using the FFT method. It is 
important to emphasize that only 60 data points are used for 
wavenumber estimation by both methods. In general, we know 
that the spectral resolution is proportional to data length and 
sampling rate. In this paper, however, we found that excellent 
results can also be obtained from only 60 sample points. 
To investigate the effect due to data length with different 
decimation factor, three tables are listed which contain results 
obtained by the FFT method. 

Recall that in the FFT method, 2048 points are used to 
obtain the spectrogram. To see the effect with different data 
points and decimation factor, we first consider the case with 
D = 8, that is, 125 decimated data points can be obtained, 
corresponding to the original signal set with 1000 data points. 

TABLE I 
RESULTS OF THE FFT FOR DATA LENGTH = 60, 

PADDED ZEROS TO 2048 AND CASE IN DECIMATION OF 8 

Index f"( l/samples) wavenumber wavelength 
206 0.1005859 1.571655 pm-' 0.6362720 pm 
207 0.1010742 1.579284 pm-' 0.6331980 pm 
208 0.1015625 1.586914 pm-' 0.6301539 pm 

TABLE I1 
RESULTS OF THE FFT FOR DATA LENGTH = 240, 

PADDED ZEROS TO 2048 AND CASE IN DECIMATION OF 2 

Index f"( l/samples) wavenumber wavelength 
51 0.02490235 1.556397 pm-' 0.6425096 pm 
52 0.02539063 1.586914 pm-' 0.6301539 pm 
53 0.02587891 1.617432 pm-' 0.6182640 pm - 

TABLE TIT 
RESULTS OF THE FFT FOR DATA LENGTH = 240, 

F'ADDED ZEROS TO 8192 AND CASE IN DECIMATION OF 2 

Index f"( l/samples) wavenumber wavelength - 
206 0.0251465 1.571655 pm-' 0.6362720 pm 
207 0.0252686 1.579284 pm-' 0.6331980 pm 
208 0.0253906 1.586914 pm-' 0.6301539 pm - 

TABLE IV 
OMPUTArION TIME AND THE RESULT OF WAVELENGTH ESTIMATION WITH 
DIFFERENT DATA LENGTH AND ORDER OF T a p w E I G m  FOR D = 10 

Again, 610 data points are adopted from the 125 decimated 
data points and applied to the FFT method. For 60 data points, 
clearly, we have fairly good results, the estimated wavelength 
being 0.16331980 pm, as shown in Table I. Here, the index 
207, in Table I, means that the estimated value is located at 
the 207tlh scale on the frequency axis. 

On thle other hand, for 1000 original data points with 
decimation factor D = 2, we will have 500 decimated data 
points. Similarly, 240 data points are adopted from the 500 
decimated data points for wavelength estimation. To obtain 
the spectrogram for wavelength estimation, the FFT algorithm 
with 204.8 points is employed as in the case shown in Table I. 
From the frequency conversion, we can observe that the main 
lobe of the spectrogram is at index 52 of the FFT bin, as 
shown in Table 11. To enhance the spectral resolution of Table 
11, the data length for the FFT algorithm is quadrupled, that 
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Fig. 9. (a) Waveform of the best H20-4. (b) FFT of the best H20-4. (c) 
MFBLP of the best H20-4. 

is, the FFT with 8,192 points is used. Since we have only 
240 data points as in Table 11, we need to pad 7,952 zeros 
to have 8,192 points. The spectral resolution by the previous 
process is pointed out in Table 111, and the result is exactly the 
same as in Table I. From these three tables, we can conclude 
that the result of wavelength estimation with D = 8 having 
60 decimated data points outperformed the one with D = 2 
having 240 decimated data points. 

As we mentioned previously, the frequency of the cosine 
function is f = ?. After the sampling process, the corre- 

Signal 

2 2  I 0 100 200 Joo 400 500 6W 700 BOO 900 1000 

Data Point 

( 4  

FFT 

'000.5 1 0  1.5 20 2.5 S O  35 40 45 5 0  
Frequency (l/fim) 

MFBLP 

0.u petat I 10 
> .  

'000.5 10 1 5  20 25 S O  35 40 45 50 
Frequency (l/fim) 

(c) 

Fig. 10 (a) Waveform of the worst H20-4. (b) FFT of the worst H20-4. (c) 
MFBLP of the worst H20-4. 

sponding normalized digital frequency f ' of f is given by 

(21) 
where T, = t / N  is the sampling period measured in sec- 
ondsldata length. Defining the digital frequency, f '', which is 
the normalized digital frequency multiplied by the decimation 
factor D ,  that is, f" = f . T, . D = f '  . D ,  and substituting 
f = 9, T, and (21) to f " ,  we have 

f' f ' T, 

Authorized licensed use limited to: Tamkang Univ.. Downloaded on April 12,2023 at 03:44:36 UTC from IEEE Xplore.  Restrictions apply. 



CHERN AND CHAO: ENHANCED FOURIER TRANSFORM SPECTROMETER WITH SEARCH ALGORITHM 

8 -  

Signal 
by 

Rb. ?h. I 80 h 
Y- nr. : 4 IC 
6Bda.u.. : 10 
(LUc.l.1 1.0 - 

FFT 
0 

Rb. ct... $ IO0 E. 
M W Y N  ?&me : 9 "e 
eolr.U*. : 1 

0 0.b pd.1 I.0 

h 

-0 
L a '  

a 

-8 

VI 

0 

I .... laytb: fw) 

4 
' 0 0 0 . 5  1 0  1.5 2 0  2.5 S O  S 5  4 0  4.5 5.0 

Frequency (l/pm) 

(b) 

MFBLP 
0 

RI" rrw. : 104 $' 
U a w w t  nmr : 8 NC 

h.clm.tlos : 1 
msb plI1.1 I a0 

0 

h m zz 
$ 2  
a 

0 

0 

0 

1 0 0 0 5  1 0  1.5 2 0  2.5 5 0  3 5  4 0  4.5 5 0  
Frequency (l/pm) 

Fig. 11. 
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(a) Waveform of the H100-8. (b) FFT of the H100-8. (c) MFBLP 

Since in the sampling process the range of digital frequency 
should be less than 0.5, the range of digital frequency, f", 
should be 0 < f "  < 0.5. From Tables I and 11, we see that 
the spectral resolution will go from fine to bad if f" < 0.1, 
because the index 207 in Table I, with D = 8, did not have the 
corresponding index, 51.7, in Table 11, with D = 2. Instead, 
the main lobe of the spectrogram in Table 11, is at index 
52 which is in accordance with the index 208 in Table I. 
Alternatively, we may say that to have good resolution the 

FFT 
hb. h. $ 8 0  Ilr 
Ilnnmn um8 : 4 L 
6Bdr.u.. : IO 

- h. ,...anum 

I 0 0  0.5 I O  1.5 2 0  2.5 3 0  3.5 4 0  4.5 5 0 
Frequency (l/pm) 
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0.1 < f "  < 0.5. (23) 

Substituting (22) into (23) we get 

2v t 
A N  

0.1 < - . - * D < 0.5. 

Let the mirror's moving speed, U ,  be a parameter; by definition, 
we have 

pulse number unit distance 
second pulse 

translate distance 
second 

?I= X 

- - 

where 
pulse number 

second 
- 

= frequency sent out by pulse generator 

and 
unit distance 

pulse 
_- 

= minimum distance traveled by translator. 

. -  - Since 2v, equal to the pulse generator frequency ( f p )  mul- 
tiplied by 0.1 pm, the wavelength, equal to 0.6328 pm, range of frequencies, f" ,  is simply limited by (see Tables I 

Authorized licensed use limited to: Tamkang Univ.. Downloaded on April 12,2023 at 03:44:36 UTC from IEEE Xplore.  Restrictions apply. 



134 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 45, NO. 1, FEBRUARY 1996 

a 
v) a 

~~ s ' 0 0 0 5  1 0  

.... klytb. t-) - brr . 0.- - - - -  Me": O . M ? b p m  

2 0  2 5  3 0  3.5 4 0  4 5  5 0  
?quency (l/pm) 

(a) 

MFBLP 
0 

Rb. Rq. : 10 ih 
u*..an Tima, 4 ..E 

LI.cim.11on : LO 
(Luwlnt s e a  

- b :o.- 

' 0 0 0 5  1 0  1 5  2 0  2 5  3 0  3.5 4 0  4.5 5 0  
Frequency (l/pm) 

CO) 
Fig. 13. (a) FFT in SNR = -3 0 dB. (b) MFBLP in S N R  = -3.0 dB 

N = 1000, and D,  the decimation factor, are all known, 
substituting these into (24), we have 

632 < fp . t . D < 3164 (25) 

where fp represents the value of the pulse generator frequency 
in Hz units. 

As mentioned in [3], the sampling rate depends on the 
spectral range of the material. Through the above discussion, 
we also found that the spectral resolution is not only affected 
by the data length, but also significantly affected by the 
decimation factor. Consequently, if a fairly good result is to 
be obtained, the conditions of (24) or (25) must be satisfied. 

On the other hand, the spectrogram of the optical signal us- 
ing the MFBLP method with search algorithm is evaluated by 
S(w)  in (18). Since S(w)  is a continuous function of w ,  we can 
enhance the spectral resolution in the following way: When the 
spectrogram is obtained, we divide the scale of the frequency 
axis into a more precise scale in the vicinity of the main lobe 
peak. Through the above processing, the spectral resolution 
can then be enhanced because the estimated values have more 
precision corresponding to the new frequency scale. However, 
the frequency scale corresponding to the FFT algorithm is 
limited by the data length, such that the resolution can not be 
improved. Moreover, the search algorithm developed is a new 
method, which automatically extracts the principal eigenvalues 

FFT 
* h*. : * x. 
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Frequency (l/pm) 
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Frequency (l/pm) 

(b) 

Fig. 14. (a) FFT method. (b) MFBLP method. 

corresponding to the different optical wavenumbers, and a 
good result can be obtained. Therefore, the MFBLP method 
can achieve a good result in practice when the search algorithm 
is employed. 

Finally, to further compare the result of the FFT method 
with the method of MFBLP along with the search algorithm 
in the noisy case, we induced additive white noise, which is 
produced by the computer, into the optical signal H20-4. After 
computer simulation, Figs. 12 and 13 show the results for the 
signal-to-noise ratio in 0 dB and -3 dB, respectively. Since the 
signal waveform has been distorted by the induced noise, ,the 
FFT method can not obtain satisfactory results. Conversely, the 
MFBLP method with search algorithm can obtain the desired 
result and has a strong tolerance in the noisy case compared 
to the FIT method. 

Moreover, as described earlier in this section, to reduce the 
computational effort for evaluating the spectrogram using the 
MFBLP method, the length of data points and the number 
of tap weights have to be decreased. Table IV shows the 
computational requirements and the results of wavelength 
estimation related to the length of data points and the tap 
weight number. The average computation time for evaluating 
the spectrogram using the FFT method with 2048 points is 
0.1245 s. However, from Table IV, we can see that satisfactory 
results can still be achieved for the MFBLP method with D = 
10, for 40 data points and 10 tap weights. The computation 
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Fig. 15. (a) FFT method. (b) MFBLP method. 

time in this case is 0.0441 s, which is much less than the one 
using the FFT method. 

IV. CONCLUSION 

In this paper, we have shown that the merits of the MFBLP 
method are truly greater than those of the conventional FTT. 
In practice, since the number of principal eigenvalues is not 
known in advance, the search algorithm will be useful and can 
achieve the desired results for the wavelength estimation. Prob- 
lems such as sampling rate, data length and the effect due to the 
decimation factor have also been discussed. From experimental 
results, we conclude that to have the desired result using the 
FFT method the condition, 632 < fp . t . D < 3164, has 
to be satisfied. Due to budget and equipment limitations, we 
could not use the proposed method for multiple-wavenumber 
measurement. However, to document the advantage of the 
method presented, a computer simulation for two-wavenumber 
estimation is investigated. For this purpose, we induced the 

additive si,gnal with wavelength Xz = 0.6000 pm or Xa = 
0.5500 pm, which is produced by the computer, into the 
optical sig,nal set, H20-4. From the simulation results of 
Figs. 14(a) to 15(b), we nevertheless believe that the proposed 
method is superior to the FFT method and can be successfully 
applied to other problems of spectrum analysis. 
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